
Usage of Merkle Tree Hash in Data Version
Synchronization to Cut Data Transmission Size

Aidil Rezjki Suljztan Syawaludin 135170701

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113517070@std.stei.itb.ac.id

Abstract—Data has become essential to the world. Nowadays,
almost everybody on Earth needs to have access to any form of
digital data through various forms of devices in one way or
another. The Internet is one such example, allowing people to get
access to information from all around the world. Information is
transmitted through the Internet in a form of data. To get
information, the client needs to download the data through
networks. Everything transmitted through the Internet is
transmitted in a form of data. For example, when one downloads
an application or file, it is downloaded in a form of data. Data
makes up most of the digital world. As data gains more
significance and importance, data transmission naturally also
becomes a requirement. Data transmission through the Internet
requires bandwidth and bandwidth is not an unlimited resource.
In this paper, will be explored a mechanism which uses Merkle
Tree Hash to hash the files or parts, to then decide which actual
parts of the files, which will be called chunks, have changed, and
download those parts only, to cut the data size to be transmitted
or downloaded.

 Keywords—data, the Internet, transmitted, information

I. INTRODUCTION
Data has become essential to the world. Nowadays, almost

everybody on Earth needs to have access to any form of digital
data through various forms of devices in one way or another.
The Internet is one such example, allowing people to get
access to information from all around the world. Information is
transmitted through the Internet in a form of data. To get
information, the client needs to download the data through
networks. Everything transmitted through the Internet is
transmitted in a form of data. For example, when one
downloads an application or file, it is downloaded in a form of
data.

As stated above, data makes up most of the digital world. As
data gains more significance and importance, data transmission
naturally also becomes a requirement. This comes at a cost.
Data transmission through the Internet requires bandwidth and
bandwidth is not an unlimited resource. The larger the data, the
more bandwidth needed to transmit that data in a short amount
of time. Though one can still transmit data with small
bandwidth, it is not ideal because the time required to transmit
the data will also get longer.

One example of data transmission requirement is when files
or applications need to be synchronized with the latest one in

the server. This is achieved by doing updates, downloading the
required files or changes to local devices. As stated before, this
transmission requires bandwidth. The basic mechanism to
provide synchronization of files or applications is by
redownloading everything. This is not ideal because some files
or parts may not actually have changed, thus downloading
everything would waste bandwidth. Another mechanism is by
using hashes generated by the files digested by a hashing
algorithm, then decide which files have changed and
download. This however, may still waste bandwidth when the
change in a file occurs in only a small part of the file, for
example a few bytes on the ending part of the file.

In this paper, will be explored a mechanism which uses
Merkle Tree Hash to hash the files or parts, to then decide
which actual parts of the files, which will be called chunks,
have changed, and download those parts only, to cut the data
size to be transmitted or downloaded.

II. DATA TRANSMISSION THROUGH NETWORKS
The Internet actually consists of a massive number of

networks interconnected to each other, hence the name. Data
transmitted through the Internet is actually transmitted over
several networks. A network is defined by one or several
connections between devices that allows the devices to
communicate with each other in that network. This network
consists of several layers, each having their own concerns
regarding data transmission.

The first model of networking is the OSI model. In this
reference model, a network is divided into seven layers with
their own concerns[1]. The first layer is the physical layer. In
this layer, the main concern is transmitting the raw bits of data
through physical cables or channels that connect the devices in
the network. This layer needs to make sure that if one end of
the channel sends a bit 1, the other receiving end receives the
same bit 1. This layer is more concerned with the physical
attributes and characteristics of the medium used to transmit
the data. For example, this layer needs to define voltages used
to define bit 1 and bit 0 of data, the time needed to transmit
that voltage, the pins to use, or wireless channels and other
things that are more related to mechanical, electrical, or
physical concerns.

The second layer in the OSI model is the data link layer.
This data link layer is acting as an interface between the

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

network layer and the physical layer. This layer handles how
data received by the physical layer appear free of transmission
errors to the network layer. In this layer, data is transmitted in
a form of data frames. The sender is required to break the data
into several data frames, which then is enveloped by frame
header and frame footer. The receiver then receives those data
frames and constructs the data back.

The next layer is the network layer. In this layer, routing of
packets becomes a concern. A packet that is about to be sent
needs to have a destination. The network layer decides where
to send that packet. Thus, in this layer, routing is required.
Routing is deciding where to send the packet. For example, a
packet may be addressed to a device that is in the same
network as the sender. In this case, the routing will decide to
send the packet to that device directly. However, another case
of sending a packet may involve a device that exists in a
different network than the sender. In that case, the routing will
decide to send that packet according to the policy set by the
routing mechanism. One example is to send that packet to the
gateway of the network. After sending the packet to the
gateway, the network of the gateway device will then decide
where to send the packet next. This is done through several
networks until the packet is received by the correct device or
dropped by the network.

The fourth layer is the transport layer. The main concern of
this layer is to break data from the upper layers into smaller
units which will then be sent by the network layer as packets
and ensure that the data is sent and received properly. This
layer isolates the upper layers from the possible changes of
hardware technology of the lower layers. This layer determines
the protocol of the data transmission, such as an error-free
protocol that ensures the data is transmitted without error, or
another protocol that focuses on the speed of the transmission
without ensuring that the data is transmitted without error.

The fifth layer is the session layer. This layer focuses on
establishing and maintaining sessions between users in
different devices. This layer has dialog controls to keep track
of whose turns to transmit through the network, mutual
exclusion to avoid two parties entering critical operations at the
same time, and synchronization to allow data transmission to
continue without having to restart from the beginning.

The sixth layer, the presentation layer, mainly focuses on
how to present the data. This layer makes sure that devices that
have different data structures can still communicate through
the network. This is done by defining an abstract data
structure. Unlike the lower layers, this layer is not concerned
about transmitting bits of data, but more about how the data
can be understood by having semantics and syntaxes.

The last layer is the application layer. This layer is an
application level layer that uses various protocols. One
example is the HTTP (HyperText Transfer Protocol) which is
the basis of World Wide Web applications. Other examples of
the protocols in this layer is the FTP (File Transfer Protocol)
which is used to transfer data between devices, or the IMAP,
POP3, and SMTP which are used in email applications.

The OSI model may have defined the layers in detail.
However, the currently used model for networking is actually
not the OSI model. The widely used model of networking is

the TCP/IP model. Similar to the OSI model, this model
divides into four layers with separation of concerns.

The lowest layer is the host-to-network layer. This layer
replaces the first and second layers of the OSI model. Thus,
this layer has main concerns regarding data transmission on the
physical level. The TCP/IP model does not define this layer in
detail, leaving the actual implementation of this layer to the
device manufacturers.

The second layer is the internetwork layer, which is the
equivalent of the network layer in the OSI model. In this layer,
a new protocol called the Internet Protocol (IP) is introduced.
Similar to the network layer, this layer focuses on routing the
packets to the correct destination based on an address defined
in the packet. This address is known as an IP address. Devices
connected to a network will be assigned an IP address, which
will then be used by a router to determine destinations of
packets. This layer allows connection between networks, thus
allowing devices from different networks to communicate.

The third layer is the transport layer. This layer is similar to
the transport layer in the OSI model. Two protocols are defined
in this layer, in accordance with the two concerns of the
transport layer in the OSI model. The first protocol is the TCP
(Transmission Control Protocol), which focuses on
establishing a reliable connection ensuring that no error occurs
when transmitting the data. The second protocol is the UDP
(User Datagram Protocol). This protocol focuses on
lightweight data transmission allowing data to be transmitted
in a short time, however not error-free. The TCP is suited for
data transmission that requires error-free connection, such as
file downloads or email transfer, while the UDP is suited for
data streaming such as VOIP (Voice over Internet Protocol) or
video streaming.

The last layer in the TCP/IP model is the application layer.
The previous presentation and session layers were no longer
needed, since those layers were rarely used when the OSI
model was used. This layer is the same as the application layer
in the OSI model. The usual protocols used in this layer are
HTTP, FTP, SMTP, IMAP. POP3. Other protocols are added
such as DNS for domain name resolution. Applications may
also define their own protocol to use, hence this layer is
flexible to the needs of the application.

Figure 1. Correspondence of the OSI model to TCP/IP model.

Source: Tanenbaum & Wetherall, 2014

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

III. HASHES AND MERKLE TREE HASH

A. Hash Function
Hash function is a function that generates a value with a

predefined length by digesting a data input, which may be in a
form of text, file, or other digital form of data[2]. This hash
function is a one-way function. This means that this function
generates a value based on the input, however the input cannot
be determined or reconstructed from the generated value.
Hashes are commonly used in order to determine whether data
has been changed or not. This is due to the characteristic of
hash functions, that is, hash functions produce a whole
different value even when only a few bits or bytes of the
original data is changed. Therefore, it is suited to be used for
tamper-checking or error-checking.

Figure 2. Flow diagram of a hash function.

As stated before, a hash function receives an input of data,

which may be called as a message digest m. The function then
generates a value of hash n. A hash function needs to make
sure that for every possible n, there exists only one message
digest m that results in n. This requirement is called collision
resistance. A function that has multiple message digests mx and
my that results in the same value n cannot be used to do
tamper-checking, because the data may actually have gotten
changed even though the hash value is the same.

Generally, a hash function needs to have the following
characteristics:

1. Accepts variable length input without any limits of
input size.

2. Generates hash values with fixed length.
3. For any input of message digest m, the hash value n

can be generated relatively easily by the hash
function.

4. The hash function is a one-way function. The
generated hash value n cannot be reconstructed back
into the message digest m.

5. The hash function is collision resistant.

B. Merkle Tree Hash
Merkle tree hash is first introduced by Ralph Merkle. This

concept is based on basic tree data structure and hashes[3].
Merkle tree is a binary tree, where the values on the leaves
(nodes that have no child nodes) of the tree are the hash values
of chunks of the data. The value of the other nodes in the
Merkle tree is determined by generating hash values of the
corresponding child nodes of the node. For example, given a
tree with leaves of hash values H1 and H2, the root of that tree
will have a value of H3 which is the hash value generated by
using the child values of H1 and H2 as the input for the hash

function. To better understand, an example of a Merkle tree is
provided below.

Figure 3. An example of a Merkle tree hash.

Source: Bashir, 2017

The value of the root in a Merkle tree will be determined by
the values of the other nodes in the tree. This means that when
at least one part of the tree changes, the value of the root will
also change. Therefore, a Merkle tree can be used to determine
whether a change has occurred on the data or not.

A change can be detected easily by comparing the values of
the nodes in the Merkle trees. Merkle trees also allow for
finding parts of the data that have changed. This can be done
by traversing the tree being checked and comparing the values
of the nodes to the original Merkle tree. When the value of a
node is different, it may be caused by a change in the left child
node or the right child node, which can be checked easily. This
means that finding the changed parts can be done easily and
relatively quickly.

To use this Merkle tree on a file, one can divide the file into
several chunks of data. Then, the Merkle tree can be
constructed by using the chunks as message digests to generate
the hash values for the leaf nodes. After the leaves are
constructed, the Merkle tree can be further constructed by
using the method stated before. However, the number of the
leaf nodes may not actually even. For example, the leaf nodes
may only consist of 7 nodes. In this case, the algorithm can add
a shadow node with a predetermined value, perhaps 0 or other
values, which will then be included in the hash calculation for
the parent child. This process will then be repeated for any
nodes that do not have complete child nodes and are not one of
the chunk nodes. Thus, Merkle trees can be constructed for any
kind of files and digital data.

IV. USAGE OF MERKLE TREE HASH IN DATA VERSION
SYNCHRONIZATION TO CUT DATA TRANSMISSION SIZE

In this paper, an idea is proposed to use Merkle Tree Hash in
synchronizing data versions to the hosted data version in order
to cut the amount of data needed to be downloaded. The main
idea can be divided into several parts as follows.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Figure 4. Flow chart of the proposed idea.

A. Merkle Tree Hash Construction

The first part of the idea is to construct the Merkle tree of
the related data. This idea is focused mainly on handling a
single bulk of data, thus to handle multiple files, a
preprocessing may be needed though not mandatory since one
can also traverse and operate on each file individually.

The preprocessing is done by creating a single bulk of data
from the multiple files. The idea is to construct the bulk by
appending the bytes of the related files. This can be done
relatively easily by traversing each file then appending the
bytes of the file into the singular bulk of data. The idea can be
seen from the following figure.

Figure 5. Construction of the bulk data.

After the preprocessing is done, the bulk of data will then be

divided into small parts called a chunk. To do this, a fixed size
of chunk needs to be determined first. The size may vary

however needs to be consistent throughout the implementation.
For example, if decided that a chunk will be 32KB, then both
the client and server will later need to have the same chunk
size.

The next step is to build the Merkle tree. The chunks will be
used as message digest for the hash function to generate the
hash values for the Merkle tree leaf nodes. After the leaf nodes
are generated, the tree can be further constructed by using the
Merkle tree method as stated before. Each hash of the chunks
will be hashed in pairs to construct their respective parent
nodes. This process will be done until the tree converges into
one single node that will be the root node of the Merkle tree.

B. Version Difference Checking

The next part of the proposed idea is to check the difference
of the versions in the client and server. This will be done by
comparing the Merkle tree of the client and the server. Thus,
the server also needs to do the first part, which is constructing
their own Merkle tree.

After the first part is done by both the client and server (the
server only needs to do this once when a change has occurred),
the version difference checking can be started. The idea is to
compare each node of the Merkle tree and determine which
parts of the data are different. This will be done by traversing
both the Merkle tree of the client and the server.

First, the client that wants to synchronize requests the Merkle
tree of the server. After receiving the response, the client then
traverses the node of the Merkle tree starting from the root. On
each node, the client compares the value of the node with the
local node. If the values are the same, then the traversal will be
stopped. If the values are different, then the traversal continues.
This process will be repeated until all the traversings are
stopped or reaches the leaf nodes.

When the traversing reaches a leaf node, that means the
chunk corresponding to the leaf node has changed and needs to
be redownloaded. The idea is to keep track of the chunks that
need to be redownloaded by using a simple data structure such
as arrays that stores the index of the chunk.

There may be a case where the number of leaf nodes in the
local Merkle tree is different from the Merkle tree of the
server. This happens because the server changed the data and
added new things into it. For example, when the server adds a
new file or edits the existing file that results in enlarging the
size of the file. When this happens, the client needs to also add
those chunks to the list of chunks to download.

After all the traversings are done, the chunks needed have
been determined and can be downloaded from the server in the
next part. The use of the Merkle tree in this proposed idea
allows for faster difference checking and determination of
chunks required. Instead of traversing through all the chunks,
in this idea one only needs to traverse the relevant nodes in the
tree. Only when a difference is found will the child nodes be
further traversed.

C. Data Transmission

The next part is to do the data transmission. In this part, the
clients that have previously determined the chunks to
redownload will proceed to request those chunks to the server.
This means that the server needs to support downloads of the
chunks based on the index of the chunk.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

The server previously has constructed the bulk data and
divided it into small chunks. The server then needs to serve
those chunks and make it available to download by using
indices of the chunks. For example, the client has determined
before that the client needs chunks C3 , C8 , and C9 . The client
will proceed to request those chunks to the server. The server
needs to serve those chunks.

The method to serve those chunks are not determined directly
in this paper. However, one can serve a web server that has an
endpoint allowing to download the chunks by their indices.
Another idea is to serve those chunks directly using existing
web server programs. The client can download the chunks by
using a predetermined pattern of address naming for the
chunks.

After the chunks have been downloaded by the client, the
client can then proceed to the next part.

D. Data Reconstruction

The last part of the proposed idea is to reconstruct the
chunks downloaded from the server. The client has previously
built the bulk data, divided it into small chunks, then built the
Merkle tree, compared the Merkle tree with the one in the
server, determined the chunks to download, and downloaded
the chunks from the server. After that, those downloaded
chunks need to be reconstructed back into the bulk data.

The idea is to put the chunks right into the existing bulk
data. This means overwriting over the existing bulk data. For
that, the client needs to know where to overwrite each chunk.
An idea to solve this issue is by requesting that information to
the server. The server needs to have metadata regarding the
chunks it serves. That metadata will contain the required
information for the client to write the chunks at the right
location.

The method to provide the metadata is not directly
ascertained in this paper, however there are several ideas
regarding this issue. The first idea is for the server to serve an
endpoint for the client to retrieve this metadata. The client will
create a request to that endpoint, which then receives the
metadata. That metadata will then be used to write the chunk
into the correct place. Another idea is to bind the metadata on
the data transmission. The server may add the metadata on the
transmitted data, possibly by appending the metadata to the
data about to be transmitted. The client then receives the data
and parses the metadata first.

After the chunks have been correctly written on top of the
existing bulk data, the next step is to reconstruct the files that
were appended to construct the chunk data. This step is not
necessary if the bulk data method is not used in the first part
and uses each file in place of the bulk data instead. To
reconstruct the files, the client needs to know how to divide the
bulk data back into the files. Again, this paper does not directly
decide the mechanism for the client to get this information.
However, one possibility is by having the server serve this
information.

Similar to before, in this solution the server serves the
information about how to divide the bulk data back into the
files. This can be done by serving an endpoint that returns the
information. This information may come in the form of a list of
filenames with the starting and end position of the byte (may

use disposition from the start of the bulk data). The client will
create a request to this endpoint and retrieve the information.

After the client knows how to divide the bulk data, it may
proceed to reconstructing the files. The client will write the
bytes of the bulk data with regard to the information before and
recreate the files. The files will then be recreated and
synchronized with the files in the server.

E. Data Transmission Size

The main purpose of this idea is to cut the size of data
needed to be transmitted or downloaded when a client wants to
synchronize files or data with the server. In this idea, the data
that is transmitted are actually in a form of small chunks. The
size of those chunks may be determined first to tune the
performance.

By using this approach, when a client wants to synchronize
the files, the client does not need to redownload the whole file
or data from the server. Instead, the client only needs to
download the small chunks that contain the changes from the
server. This will naturally cut the size of data needed to be
transmitted through the network, which saves bandwidth of
both the client and the server.

For example, a client wants to synchronize multiple files
with the size of 1GB each. A change has occurred in the server
that only affected 512KB of data in two of the files. When
using this proposed idea with a chunk size of 32KB, the clients
only need to download the affected chunks which will not take
more than 1024KB for the two changed files. The client does
not need to download 2GB of data.

V. DOWNSIDES OF THE PROPOSED IDEA
The proposed idea may cut the size of the data needed to be

transmitted. However, there is a weakness of this idea found in
this exploration. When the data that is about to be
synchronized is a compressed data, the size of data required to
be downloaded may actually turn out to be bigger compared to
then the data is not compressed.

This may happen when the data is compressed, especially
when compressed with a method that utilizes a dictionary to
compress the data. This is due to the fact that the compression
process changes the pattern of the data. When the
uncompressed data is changed and then compressed, the
compression process may change the bytes differently. For
example, when using compression techniques with
dictionaries, the resulting compressed data uses the patterns
found to compress the data and the dictionary decompresses it
back into the original form. This may end up changing more
bytes than what should have been changed when the data is not
compressed.

This issue may be solved by not using compression first, but
using compression last when the chunks are about to be
transmitted. The client then decompresses the chunks and
proceeds to reconstruct the original files.

VI. CONCLUSION
The proposed idea provides a method to cut the size of data

needed to be transmitted when synchronizing data from clients

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

to the server. The usage of Merkle tree allows the client to
compare the local version with the version on the server. In
this proposed idea, the client is able to determine which small
chunks of data are needed to be redownloaded by the
comparison of the trees. Provided that preprocessing and
reconstruction of the data needs to be done in order to gain the
best result of the proposed idea. The preprocessing is done by
creating a bulk of data by appending the files about to be
synchronized and then dividing the bulk data into small chunks
with a fixed size. The reconstruction is done by first
overwriting the downloaded files on top of the existing local
bulk data by using the metadata provided by the server and
then dividing back the bulk data into separate files by using the
information provided by the server.

VII. ACKNOWLEDGMENT
Alhamdulillahirabbil ‘Alamin. First of all, the author would

like to express praises and the most gratitude to Allah SWT.
for the blessings and chance for the author to complete this
paper. Furthermore, the author would like to thank the parents
of the author, who have allowed the author to explore the
interests of the author and to study and develop. The author
would also like to thank Dr. Ir. Rinaldi Munir, M.T. as the
lecturer of IF4020 Kriptografi for the knowledge shared and
taught in the class despite the current ongoing COVID-19
pandemic which causes the lectures to be held online through
various platforms. Finally, the author would like to thank the
friends of the author who have helped the author in this
exploration and the writing of this paper, also the authors of
the references that have helped the author in the writing of this
paper.

REFERENCES

[1] Tanenbaum, A. S., & Wetherall, D. J. (2014). Computer Networks.
Harlow, England: Pearson Education Limited.

[2] Munir, R. (2020). Bahan Kuliah IF4020 Kriptografi.
[3] Bashir, I. (2017). Mastering Blockchain. Birmingham, UK: Packt

Publishing Ltd.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 Desember 2020

Aidil Rezjki Suljztan Syawaludin - 13517070

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

